Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser. I, 15.

LA THEORIE DE GAUSS

APPLIQUÉE A LA RÉFRACTION PAR INCIDENCE OBLIQUE

PAR

M. TSCHERNING

KØBENHAVN

HOVEDKOMMISSIONÆR: ANDR. FRED. HØST & SØN, KGL. HOF-BOGHANDEL BIANCO LUNOS BOGTRYKKERI

1919

E^N exposant la théorie de la réfraction de GAUSS on suppose en général que le système réfringent est centré, que l'incidence est centrale et normale et que le diamètre du faisceau incident est très petit. Dans la suite je montrerai que la théorie a une application beaucoup plus large qu'on ne se le figure en général. La seule condition nécessaire est que le faisceau incident soit de petit diamètre. Lorsqu'un faisceau étroit a traversé une surface réfringente. il est soumis aux lois exprimées par la théorie de GAUSS et il le restera tant qu'il existe, quoi qu'il lui arrive plus tard. - En général, le faisceau est astigmate: le point qui envoie le faisceau a pour ainsi dire deux images, correspondant aux deux lignes focales. Un système optique se divise ainsi, en général, en deux. J'appellerai le système qui correspond à la première ligne focale, le système A, celui qui correspond à la deuxième ligne focale, le système B. Les points, distances etc. du système A seront marqués par le signe ', ceux du système B par le signe ".

I.

Surfaces réfringentes.

Remarques historiques.

On sait que c'est TH. YOUNG qui le premier a attiré l'attention sur l'astigmatisme de l'œil humain. On sait peutêtre moins que c'est également lui qui le premier a établi les formules exprimant l'astigmatisme par incidence oblique

1*

sur une surface réfringente sphérique. Ses prédécesseurs ne s'étaient occupés que »du foyer géometrique des rayons obliques«, ce que nous appelons la première ligne focale. Young fait remarquer que c'est en effet à cet endroit que se forme l'image la plus nette d'un objet circulaire, mais que l'image d'une droite, coupant l'axe, se forme plus en arrière, à l'endroit de ce que nous appelons la deuxième ligne focale. Il établit ensuite les formules permettant de trouver la position des deux lignes focales. On trouve les formules ainsi que leurs démonstrations dans le deuxième volume de ses Lectures on natural philosophy, London 1807, p. 72—75. Je les transcris ici, en les modernisant un peu: on a de la peine à reconnaitre ces formules dans leur forme ancienne.

Je désigne

la distance de l'objet à la surface par	f_1
- — - la surface à la première ligne focale par	f'_2
deuxième	f_2''
'angle d'incidence par	i_1
'angle de réfraction par	r_1
e rayon de la surface par	R_1
'indice de réfraction par	n

Système A. Soient A_1 , Fig. 1, un point lumineux, CS la surface réfringente et A_1B le rayon incident; après la réfraction ce rayon prend la direction BP'_2 . A_1C est le rayon infiniment voisin de A_1B , situé dans le plan passant par cette droite et le centre de courbure de la surface, O; ce rayon prend la direction CP'_2 . P'_2 est alors la première ligne focale et on a $A_1B = f_1$, $BP'_2 = f'_2$. On abaisse les perpendiculaires OE sur le rayon incident et OG sur le rayon réfracté; on prolonge OE jusqu'en M et OG jusqu'en H. La figure montre qun $OE = R_1 \sin i_1$ et $OG = R_1 \sin r_1$. Le rapport de OE à OG est donc égal à n et le même rapport doit exister entre EM et GH qui sont les »accroissements des deux sinus par suite du déplacement du point Bjusqu'en $C^{(1)}$ On a

Comme l'arc BC est infiniment petit, on a

$$\frac{\operatorname{tg} MA_1E}{\operatorname{tg} CKB} = \frac{BK}{A_1B} = \frac{2R_1 \cos i_1}{f_1}, \text{ et comme} \angle CKB = \angle CLB,$$

$$\frac{\operatorname{tg} CKB}{\operatorname{tg} CP'_2B} = \frac{\operatorname{tg} CLB}{\operatorname{tg} CP'_2B} = \frac{f'_2}{2R_1} \cos r_1,$$
donc
$$\frac{\operatorname{tg} MA_1E}{\operatorname{tg} CP'_2B} = \frac{f'_2 \cos i_1}{f_1 \cos r_1}.$$

Par conséquent, en combinant cette expression avec celle trouvée ci-dessus,

$$\frac{f'_{2}\cos i_{1}}{f_{1}\cos r_{1}} = n \cdot \frac{f'_{2} - R_{1}\cos r_{1}}{f_{1} + R_{1}\cos i_{1}},$$

$$\frac{\cos^{2} i_{1}}{f_{1}} + \frac{n\cos^{2} r_{1}}{f'_{2}} = \frac{n\cos r_{1} - \cos i_{1}}{R_{1}}.$$
(1)

ou

Système B. Soient A_1B (Fig. 2), comme avant, le rayon incident, BP''_2 le rayon réfracté, et P''_2 le point dans lequel

$${}^{(1)} \qquad \frac{EM}{GH} = \frac{\varDelta \sin i_1}{\varDelta \sin r_1} = \frac{\varDelta n \sin r_1}{\varDelta \sin r_1} = \frac{n \varDelta \sin r_1}{\varDelta \sin r_1} = n.$$

ce rayon vient couper l'axe. C'est la distance $f'_2 = BP'_2$ qu'on cherche. On marque le point M, sur le rayon incident, de sorte que $OM = nR_1$; $\angle BMO$ est alors égal à r_1 , puisque

$$\frac{\sin MBO}{\sin BMO} = \frac{nR_1}{R_1} = n = \frac{\sin i_1}{\sin BMO}.$$

On a

 $MB = MD - BD = nR_1 \cos r_1 - R_1 \cos \iota_1 = R_1 (n \cos r_1 - \cos \iota_1),$

Fig. 2. Réfraction par une surface sphérique. P''_{2} la deuxième ligne focale. — D'après TH. YouNG.

On trace A_1E parallèlement à BP''_2 . A_1E est égal à nf_1 , car on a

$$\frac{A_1E}{A_1B} = \frac{\sin i_1}{\sin r_1} = n.$$

Les triangles BOP_2'' et A_1EO sont semblables, parce que A_1E est parallèle à BP_2'' et les triangles BMO et BA_1E , parce que $\angle BMO = \angle BEA_1 = r_1$ et $\angle BOM = \angle BA_1E$ = $i_1 - r_1$. On a par conséquent

$$\frac{f_{2}''}{R_{1}} = \frac{nf_{1}}{OE}, \ f_{2}'' = \frac{nR_{1}f_{1}}{OE} \text{ et } \frac{R_{1}}{f_{1}} = \frac{MB}{BE} = \frac{R_{1}(n\cos r_{1} - \cos i_{1})}{R_{1} + OE},$$
$$OE = f_{1}(n\cos r_{1} - \cos i_{1}) - R_{1}$$

nR.f.

donc

$$\frac{f_{2}}{f_{2}} = \frac{1}{f_{1}(n\cos r_{1} - \cos i_{1}) - R_{1}} \text{ ou}$$

$$\frac{1}{f_{1}} + \frac{n}{f_{2}'} = \frac{n\cos r_{1} - \cos i_{1}}{R_{1}}.$$
(2)

Si la lumière vient du coté opposé, il faut remplacer f_1 par f'_1 et f'_2 par f_2 en (1), et f_1 par f''_1 et f''_2 par f_2 en (2).

La théorie de Gauss.

Relation des points conjugués.

On peut simplifier ces formules en introduisant les distances focales. On en obtient les valeurs

Système A.

$$F'_{1} = \frac{R_{1}\cos^{2}i_{1}}{n\cos r_{1} - \cos i_{1}}, F'_{2} = \frac{nR_{1}\cos^{2}r}{n\cos r_{1} - \cos r_{1}}$$
Système B.

$$F_{1}'' = \frac{R_{1}}{n \cos r_{1} - \cos i_{1}}, \ F_{2}'' = \frac{nR_{1}}{n \cos r_{1} - \cos i_{1}}$$

en mettant tour à tour f_2 et f_1 égaux à l'infini.

Les formules (1) et (2) prennent alors la forme simple

$$\frac{F'_1}{f'_1} + \frac{F'_2}{f'_2} = 1, \quad \frac{F''_1}{f''_1} + \frac{F''_2}{f''_2} = 1.$$

La relation des points conjugués peut donc, dans les deux cas se mettre sous la forme $\frac{F_1}{f_1} + \frac{F_2}{f_2} = 1$. — On peut rendre cette expression encore plus simple, en désignant la

Fig. 3. Réfraction par une surface sphérique. Ω le centre optique.

distance de l'objet au foyer antérieur par l_1 , la distance du foyer postérieur à l'image par l_2 (Fig. 3). On a alors $f_1 = l_1 + F_1$, $f_2 = l_2 + F_2$ et l'expression devient $l_1 l_2 = F_1 F_2$ = const. — On reconnaît ces formules, elles sont identiques à celles qu'on obtient dans les cas d'incidence normale. On donne parfois à la dernière formule le nom de la formule de NEWTON. Elle exprime que le produit des distances des points conjugués jusqu'aux foyers respectifs est constant et égal au produit des distances focales.

Centre optique.

L'expression $\frac{F_1}{f_1} + \frac{F_2}{f_2} = 1$ indique, pour chacun des deux systèmes, l'existence d'un centre optique, c'est à dire d'un point par lequel passent toutes les droites, joignant des points conjugués.

Soient en effet A_1B (Fig. 3) le rayon incident, BA_2 le rayon réfracté, P_1 le foyer antérieur de l'un des systèmes et P_2 le foyer postérieur du même système. Traçons par P_2 et P_1 des droites parallèles aux rayons incident et réfracté. Ces droites joignent P_1 et P_2 à leurs conjugués qui sont à l'infini. S'il existe un centre optique, ce doit donc être le point Q, point d'intersection de ces droites. Q est en effet le centre optique, car si on trace par un point quelconque sur le rayon incident, A_1 , la droite A_1A_2 passant par Q, A_2 est conjugué à A_1 : les triangles A_1P_1Q et A_1BA_2 étant semblables, on a $\frac{A_1P_1}{A_1B} = \frac{P_1Q}{BA_2}$ ou $\frac{f_1-F_1}{f_1} = \frac{F_2}{BA_2}$ on encore $\frac{F_1}{f_1} + \frac{F_2}{BA_2} = 1$, d'où il résulte que $BA_2 = f_2$. — Les triangles A_1P_1Q et QP_2A_2 donnent directement la formule de **NEWTON**: on a $\frac{A_1P_1}{P_1Q} = \frac{QP_2}{P_2A_2}$ ou $A_1P_1 \cdot P_2A_2 = P_1Q \cdot QP_2$ ou encore $l_1l_2 = F_1F_2$.

Grossissement. Plans principaux.

Soient GM (Fig. 4) la surface réfringente, A_1B le rayon incident, BD le rayon réfracté, P_1 le foyer antérieur, P_2 le foyer postérieur et $S_1A_1 = O$ un petit objet. Pour construire l'image de cet objet nous traçons 1°) le rayon S_1P_1 — après la réfraction en B'' ce rayon prend la direction $B''S_2$, parallèle à BD — et 2°) le rayon SB'_1 parallèle à A_1B — ce rayon passe, après la réfraction, par P_2 et vient couper $B''S_2$ en $S_2 \cdot S_2$ est l'image de S_1 et $A_2S_2 = I$ est l'image de O.

Figurons nous deux plans passant par B, le premier h_1 perpendiculaire sur le rayon incident, et le second, h_2 , perpendiculaire sur le rayon réfracté. S_1B' coupe h_1 en X_1 , à une distance de B égale à O; S_1B'' coupe h_1 en Y_1 , à une distance de *B* que nous désignerons par *I'*. Marquons sur h_2 les points X_2 et Y_2 , de sorte que $BX_2 = BX_1 = O$ et $BY_2 = BY_1 = I'$. Traçons les droites $X_2S'_2$, passant par P_2 , et $Y_2S'_2$, parallèle à *BD*. $S'_2A'_2$ est alors égal à *I'*. Les

Fig. 4. Réfraction par une surface sphérique. Construction de l'image de l'objet O.

triangles $A_1S_1P_1$ et BY_1P_1 étant semblables, ainsi que les triangles X_2BP_2 et $A'_2S'_2P_2$, on a, en désignant A_1P_1 par l_1 et $P_2A'_2$ par l'_2

$$\frac{l'}{0} = \frac{F_1}{l_1} = \frac{l'_2}{F_2}.$$

Plus l'objet est petit, plus S'_2 se rapproche de S_2 , A'_2 de A_2 et I' de I. Si l'objet est très petit, on a donc le grossissement

$$G = \frac{I}{O} = \frac{F_1}{l_1} = \frac{l_2}{F_2}.$$

Nous désignerons h_1 sous le nom de premier et h_2 sous le nom de deuxième plan principal.

Si l'objet S_1A_1 se déplace parallèlement à lui même, S_1 glisse sur S_1X_1 et S'_2 glisse sur $X_2S'_2$; lorsque S_1 est en X_1 , S'_2 est en X_2 ; X_2B est l'image de X_1B : l'image d'un petit objet situé dans le premier plan principal se forme dans le deuxième plan principal; elle est de même grandeur que l'objet et orientée comme lui. Par cette dernière expression je veux dire que l'image est située de telle sorte qu'on l'amène à coincider avec l'objet en faisant subir au rayon refracté, une rotation autour du point B, jusqu'à ce que ce rayon soit dans le prolongement du rayon incident. -- Un rayon, dirigé vers un point du premier plan principal, est, après la réfraction, dirigé, comme s'il venait du point du deuxième plan principal, situé en face du premier.

Systèmes optiques.

Relation des points conjugués.

Si, après avoir traversé une surface, le faisceau rencontre une deuxième surface et subit une nouvelle réfraction, on

Fig. 5. Réfraction par un système combiné de deux surfaces.

peut se figurer les deux surfaces combinées de manière à former un système optique. Le système a un foyer antérieur, un foyer postérieur et des points conjugués; le produit des distances des points conjugués aux foyers respectifs est constant, comme c'est le cas pour une simple surface.

Soient A_1B , fig. 5, le rayon incident, BD le rayon une fois et DE le rayon deux fois refracté, P_{11} , P_{21} et Q_1 les foyers et le centre optique de la première surface, P_{12} , P_{22} et Q_2 les foyers et le centre optique de la deuxième surface¹ et A_1 un point quelconque sur le rayon incident. La droite $A_1 \mathcal{Q}_1$ coupe BD en A, point qui est conjugué à A_1 par rapport à la première surface. La droite $A\mathcal{Q}_2$ coupe DEen A_2 . Ce point est conjugué à A par rapport à la deuxième surface et en même temps à A_1 par rapport au système combiné. Le foyer postérieur de ce système est le point Π_2 dans lequel la droite $P_{21}\mathcal{Q}_2$ vient couper DE, car P_{21} est l'image, formée par la première surface, d'un point, situé à l'infini sur A_1B , et Π_2 est l'image de P_{21} , formée par la deuxième surface. De mème, le foyer antérieur est le point, Π_1 , dans lequel $P_{22}\mathcal{Q}_1$ coupe le rayon incident, A_1B . En mettant $P_{11}B = F_{11}$, $BP_{21} = F_{21}$, $DP_{12} = F_{12}$, $DP_{22} = F_{22}$, $A_1P_{11} = l_{11}$, $AP_{21} = l_{21}$, $AP_{22} = l_{22}$, $A_2P_{12} = l_{12}$, $\Pi_1P_{11} = p_1$, $\Pi_2P_{12} = p_2$ et $P_{21}P_{22} = \Delta$, on a d'après la formule de NEWTON

$$\begin{split} F_{11}F_{21} &= l_{11}l_{21} = p_1 \varDelta \text{ et } F_{12}F_{22} = l_{12}l_{22} = p_2 \varDelta,\\ \text{donc} \\ \frac{l_{11}}{\varDelta} &= \frac{p_1}{l_{21}} = \frac{l_{11} - p_1}{\varDelta - l_{21}} = \frac{A_1\Pi_1}{l_{22}} \text{ et } \frac{l_{12}}{\varDelta} = \frac{p_2}{l_{22}} = \frac{l_{12} - p_2}{\varDelta - l_{22}} = \frac{A_2\Pi_2}{l_{21}},\\ \text{ce qui donne} \end{split}$$

$$A_1 \Pi_1 = \frac{p_1 l_{22}}{l_{21}}$$
 et $A_2 \Pi_2 = \frac{p_2 l_{21}}{l_{22}};$

par conséquent

$$A_1 \Pi_1 \cdot A_2 \Pi_2 = \frac{p_1 l_{22}}{l_{21}} \cdot \frac{p_2 l_{21}}{l_{22}} = p_1 p_2 = \text{const.}$$

La loi que nous avons établie pour une surface que le produit des distances des points conjugués aux foyers respectifs est constant, est donc valable aussi pour un système combiné de deux surfaces et on peut en répétant le raisonnement montrer qu'il en est de même pour un nombre quelconque de surfaces.

La figure suppose que le rayon deux fois refracté soit

¹ Je désigne les foyers et les distances focales de la deuxième surface, comme si la lumière venait en sens inverse, pour garder la symétrie des formules qu'on lira plus loin. situé dans le plan passant par le rayon incident et le rayon une fois refracté, mais ce n'est pas une condition nécessaire. Il est facile de voir qu'on peut faire subir à DF une rotation autour de BD comme axe, sans que cela change en rien le rapport des points conjugués.

Méthode pour trouver les points conjugués.

Figurons nous deux droites, L_1 et L_2 , situées dans un plan. Sur L_1 est marqué un point P_1 , sur L_2 le point P_2 . A un point quelconque, A_1 , situé sur L_1 , correspond un point conjugué A_2 , situé sur L_2 . Les points conjugués sont liés par la condition que le produit $A_1P_1 \cdot A_2P_2$ doit être constant. Plus A_1 se rapproche de P_1 , plus A_2 s'éloigne de P_2 et lorsque A_1 atteint P_1 , A_2 est à l'infini; P_1 et P_2 sont donc les foyers. — Le point d'intersection des droites représente deux points l'un appartenant à l'une des droites, l'autre à l'autre. Deux cas peuvent se présenter: ces deux points peuvent être conjugués ou non conjugués. Nous allons considérer chacun de ces cas séparément.

a. Le point d'intersection représente deux points conjugués. Nous avons déjà traité ce cas qui entre autres se présente, lorsque le rayon incident rencontre une surface réfringente ou une lentille infiniment mince. Ce cas est caractérisé par l'existence d'un centre optique.

b. Le point d'intersection représente deux points non conjugués.

Soient L_1 et L_2 , fig. 6, les deux droites, P_1 et P_2 les deux foyers et h_1 et h_2 une paire de points conjugués. Déplaçons L_2 parallèlement à elle même de manière à faire coincider h_2 avec h_1 . Soient L'_2 la nouvelle position de L_2 et P'_2 la nouvelle position de P_2 . Traçons par P'_2 la droite λ'_2 , parallèle à L_1 , et par P_1 la droite λ_1 , parallèle à L'_2 . Le point d'intersection de ces droites, k_1 , est le centre optique correspondant à L_1 et L'_2 : en traçant des droites par k_1 on peut marquer, sur L'_{2} les points A'_{2} , B'_{2} , C'_{2} etc., conjugués au points A_{1} , B_{1} , C_{1} etc. sur L_{1} . En laissant L'_{2} revenir à son ancienne position, les points trouvés restent conjugués aux points situés sur L_{1} , car la relation des points conjugués ne concerne que les distances de ces points aux foyers, distances qui ne changent pas par le déplacement. Si on laisse k_{1} participer au déplacement, il prend la position k_{2} , et les droites $k_{2}A_{2}$, $k_{2}B_{2}$ etc. seront parallèles à $A_{1}k_{1}$, $B_{1}k_{1}$ etc. Les points k_{1} et k_{2} jouissent donc de la propriété des points nodaux: si on joint k_{1} à un point A_{1} sur L_{1} par une droite, une parallèle à cette droite, par k_{2} , coupe L_{2} dans le point conjugué A_{2} . On a en effet $A_{1}P_{1} \cdot A_{2}P_{2} =$

 $P_1k_1 \cdot P_2k_2 = \text{const.}$ parce que les triangles $A_1P_1k_1 \text{ et } A_2P_2k_2$ sont semblables. Comme $P_1k_1 = P_2h_2$ et $P_2k_2 = P_1h_1$, on a aussi $A_1P_1 \cdot A_2P_2 = P_1h_1 \cdot P_2h_2$.

Si, au lieu de h_1 et h_2 , on fait coincider une autre paire de points conjugués, on obtient une autre paire de points jouissant de la propriété des points nodaux. Il existe donc un nombre infini de paires de points de ce genre, tous situés sur λ_1 et λ_2 . Ces points sont conjugués entre eux. Les deux systèmes de points sont interchangeables: on a déjà compris que les droites L_1 et L_2 représentent le rayon incident et le rayon sortant d'un système optique, mais on peut aussi bien prendre λ_1 et λ_2 comme rayons, L_1 et L_2 jouent alors le rôle de λ_1 et λ_2 , les points k deviennent les points conjugués et inversement. Comme il suffit de connaître les foyers et une paire de points jouissant de la propriété des points nodaux pour trouver n'importe quelle paire de points conjugués, on peut aussi trouver n'importe quelle paire de points, jouissant de la propriété des points nodaux, si on connaît les foyers et une paire de points conjugués: des droites parallèles entre elles, passant par deux points conjugués, coupent λ_1 et λ_2 en des points, jouissant de la propriété des points nodaux. Ainsi, une droite, joignant deux points conjugués, coupe toujours λ_1 et λ_2 en des points jouissant de cette propriété. Cette remarque nous servira tout à l'heure.

Pour plus de clarté, j'ai commencé par supposer L_1 et L_2 situés dans le même plan, mais ce n'est pas une condition nécessaire: quelle que soit la direction de L_2 , on peut toujours la déplacer parallèlement à elle même de manière à faire coincider h_2 avec h_1 .

Par le déplacement de la droite L₂ nous avons ramené le cas où le point d'intersection des droites ne représente pas deux points conjugués à celui d'une simple surface réfringente. Mais il faut ajouter une condition pour que les deux cas soient tont à fait analogues. Nous avons vu (p. 9) que dans le cas d'une simple surface l'image et l'objet sont de la même grandeur, au moment où ils se rencontrent au point d'incidence. Pour obtenir une analogie complète il faut donc non seulement que l'image d'un petit objet, placé en h_1 , se forme en h_2 , mais aussi que cette image soit de la même grandeur que l'objet. Nous désignerons les deux points conjugués qui satisfont à cette condition comme points principaux et les plans perpendiculaires sur L_1 et L₂, passant par ces points, comme plans principaux; les distances séparant les points principaux des foyers seront designées comme distances focales et les points k_1 , k_2 qui correspondent aux points principaux, comme points nodaux.

Combinaison de deux surfaces réfringentes 1.

Soient comme avant A_1B (fig. 7) le rayon-axe du faisceau incident, BD la direction que prend ce rayon après la réfraction par la première surface et DE la direction qu'il prend après la réfraction par la deuxième surface. Soient P_{11} , P_{21} , Q_1 , F_{11} et F_{21} les foyers, le centre optique et les distances focales de la première surface, P_{12} , P_{22} , Q_2 , F_{12} et F_{22} les foyers, le centre optique et les distances focales de la deuxième surface. Nous trouvons comme avant les foyers du système combiné, Π_1 et Π_2 , en traçant les droites $P_{22}Q_1$

Fig. 7. Constructions permettant de trouver les points cardinaux d'un système combiné de deux surfaces.

et $P_{21}\mathcal{Q}_2$. Par Π_1 et Π_2 nous traçons les droites λ_2 et λ_1 , parallèles aux rayons incident et sortant. Soient k_1 et k_2 les points où ces droites coupent la droite $\mathcal{Q}_1\mathcal{Q}_2$, qui joint les centres optiques des surfaces. Nous allons démontrer que ces points sont les points nodaux.

Remarquons d'abord que les points k_1 et k_2 jouissent de la propriété des points nodaux. Les points T_1 et T_2 où $\mathcal{Q}_1 \mathcal{Q}_2$ coupe les rayons incident et sortant, sont conjugués: la première surface forme de T_1 une image T, située quelque part sur $\mathcal{Q}_1 \mathcal{Q}_2$; l'image de T que forme la deuxième surface doit

¹ Il est bien entendu qu'on ne peut combiner que deux systèmes de même nom, deux systèmes A ou bien deux systèmes B. également être située sur $\Omega_1\Omega_2$ et aussi sur DE; c'est donc $T_2 \cdot \Omega_1\Omega_2$ joint donc des points conjugués et doit par conséquent couper les droites λ_1 et λ_2 en des points qui jouissent de la propriété des points nodaux.

Il reste à prouver que les points h_1 et h_2 qui correspondent à k_1 et k_2 , sont les points principaux, c'est à dire que l'image d'un objet, situé en h_1 , soit de la même grandeur que l'objet. On trouve h_1 en faisant $h_1\Pi_1 = k_2\Pi_2$ et h_2 en faisant $h_2\Pi_2 = k_1\Pi_1$. Comme h_1 et h_2 sont des points conjugués, ils ont une image commune, H. On trouve cette image en traçant $h_1\Omega_1$ (ou $h_2\Omega_2$). — Figurons nous un petit objet, O, placé en H et soient I_1 et I_2 ses images, placées en h_1 et h_2 . On a (v. p. 9)

 $\frac{O}{I_1} = \frac{HP_{21}}{F_{21}} \text{ et } \frac{O}{I_2} = \frac{HP_{22}}{F_{22}}, \text{ mais } \frac{HP_{21}}{F_{21}} = \frac{H\mathcal{Q}_1}{\mathcal{Q}_1 h_1} \text{ et } \frac{HP_{22}}{F_{22}} = \frac{H\mathcal{Q}_2}{\mathcal{Q}_2 h_2},$ par conséquent

$$\frac{O}{I_1} = \frac{H\Omega_1}{\Omega_1 h_1}$$
 et $\frac{O}{I_2} = \frac{H\Omega_2}{\Omega_2 h_2}$.

La condition pour que $I_1 = I_2$ est que

 $\frac{H\Omega_1}{\Omega_1 h_1} = \frac{H\Omega_2}{\Omega_2 h_2},$

c'est à dire que h_1h_2 soit parallèle à $\mathcal{Q}_1\mathcal{Q}_2$. Cette condition est satisfaite, lorsque les points nodaux sont situés sur $\mathcal{Q}_1\mathcal{Q}_2$, puisque h_1h_2 est toujours parallèle à k_1k_2 (v. fig. 6). — Comme $\frac{O}{I_1} = \frac{HP_{21}}{F_{21}}, \quad \frac{O}{I_2} = \frac{HP_{22}}{F_{22}}$ et $I_1 = I_2$, on a $\frac{HP_{21}}{HP_{22}} = \frac{F_{21}}{F_{22}}$: le point H divise $P_{21}P_{22}$ (\mathcal{A} , l'intervalle optique) dans le rapport des distances focales postérieures des surfaces.

Les plans principaux peuvent servir à la construction de l'image d'un petit objet placé sur AB. Soit $S_1Q_1 = O$ un tel objet; traçons les rayons S_1G_1 , parallèle à AB, et S_1R_1 , dirigé vers Π_1 . D'après ce que nous venons de dire, G_2 et R_2 , les images de G_1 et R_1 doivent être situés dans le deuxième plan principal et on doit avoir $G_2h_2 = G_1h_1$ et $R_2h_2 = R_1h_1$. Le rayon S_1G_1 aura après la réfraction la direction Π_2G_2 , le rayon S_1H_1 aura la direction UR_2 , parallèle à DE, et le point d'intersection, S_2 , sera l'image de S_1 . Q_2 , l'image de Q_1 , se trouve en traçant k_2Q_2 parallèle à Q_1k_1 ; $Q_2S_2 = I$ est l'image de O. Si on se figure DE déplacé parallèlement à elle même de manière à faire coïncider h_2 avec h_1 , le cas devient identique à celui de la fig. 4, ce qui peut servir à trouver l'orientation de l'image dans les cas plus compliqués: l'image S_2Q_2 est toujours parallèle à R_2h_2 , comme l'objet S_1Q_1 est parallèle à R_1h_1 , et R_2 doit après le déplacement être situé en face de R_1 .

En désignant le grossissement par G, $-h_1\Pi_1$ par Φ_1 , $-\Pi_2h_2$ par Φ_2 , $Q_1\Pi_1$ par l_1 , Π_2Q_2 par l_2 , Q_1h_1 par φ_1 et $-Q_2h_2$ par φ_2 , on a

$$G = \frac{I}{O} = \frac{-\varphi_1}{l_1} = \frac{l_2}{-\varphi_2}$$

 $(\triangle Q_1 S_1 \Pi_1 \text{ semblable } \grave{a} \bigtriangleup h_1 R_1 \Pi_1 \text{ et } \bigtriangleup h_2 G_2 \Pi_2 \text{ semblable} \\ \grave{a} \bigtriangleup Q_2 S_2 \Pi_2).$

Par conséquent

$$l_1l_2 = \Phi_1\Phi_2 = \text{const. et } \frac{\Phi_1}{\varphi_1} + \frac{\Phi_2}{\varphi_2} = 1.$$

On a déjà vu (p. 11) que le produit des distances des points conjugués aux foyers respectifs est égal à une constante; on voit ici que cette constante est égale au produit des distances focales, comme c'est aussi le cas pour une simple surface.

Combinaison de deux systèmes optiques.

On trouve les points nodaux du système résultant de la combinaison de deux systèmes optiques en joignant les seconds points nodaux des deux systèmes par une droite et en traçant des parallèles à cette droite par les premiers points nodaux. La parallèle par le premier point nodal du premier système coupe λ_1 en un point qui est le premier point nodal du système combiné. Le second point nodal est le point où la parallèle par le premier point nodal du second vidensk. Selsk. Math-fysiske Medd. I, 15. 2 système coupe λ_2 . — Si les systèmes à combiner sont centrés autour d'un axe, les points nodaux sont situés sur cet axe.

Soient $A_1B_1B_2D_1D_2E$ (Fig. 8) le rayon-axe du faisceau, h_{11} , h_{21} , k_{11} , k_{21} , P_{11} et P_{21} les points cardinaux¹ du premier système et h_{12} , h_{22} , k_{12} , k_{22} , P_{12} et P_{22} les points cardinaux du deuxième système. Figurons nous le rayon incident, A_1h_{11} , déplacé parallèlement à lui même de manière à faire coïncider h_{11} avec h_{21} et k_{11} avec k_{21} . Soient A'_1h_{21} la nouvelle direction du rayon incident et $h_{22}E'$ la direction correspondante du rayon sortant. On peut considérer la droite coupée,

Fig. 8. Constructions permettant de trouver les points cardinaux d'un système combiné de deux systèmes optiques.

 $A'_1h_{21}h_{22}E'$ comme un rayon réfracté, analogue au rayon A_1BDE , fig. 7. On obtient ainsi un système optique fictif. Au moyen des constructions que nous venons d'indiquer on détermine les points cardinaux de ce système; h'_1 , k'_1 et Π'_1 , appartenant au rayon incident, et h'_2 , k'_2 et Π'_2 , appartenant au rayon sortant. En laissant le rayon incident et le rayon sortant revenir à leurs anciennes positions, on obtient les véritables points cardinaux du système combiné, h_1 , k_1 et Π_1 pour le rayon incident et h_2 , k_2 et Π_2 pour le rayon sortant. Il est clair qu'on peut se servir de cet artifice pour trouver les points cardinaux; nous avons vu qu'on peut

¹ On désigne ainsi les six points qui caractèrisent un système optique, les points principaux, les points nodaux et les foyers.

18

trouver les points conjugués de cette manière, et les points Π_1 et h_1 ne sont pas autre chose que les points conjugués à P_{22} et H par rapport au premier système, comme Π_2 et h_2 sont les conjugués à P_{21} et H par rapport au second système.

D'après ce qui précède, il n'y a pas de difficulté à trouver les points cardinaux par construction. Une droite par k_{11} parallèle à $P_{22}k_{21}$ coupe le rayon incident en Π_1 . Pour trouver k_1 on trace par k_{11} une droite parallèle à $k_{21}k_{22}$. Le point dans lequel cette droite coupe λ_1 est k_1 . On trouve Π_2 et k_2 de la même manière. La position de h_1 et de h_2 est déterminée par la condition que $h_1\Pi_1 = k_2\Pi_2$ et $h_2\Pi_2 = k_1\Pi_1$.

Formules déterminant la position des points cardinaux de systèmes combinés.

On a vu que le point H divise la distance $P_{21}P_{22} = \Delta$ dans le rapport des distances focales postérieures des systèmes composants. On a par conséquent

$$\begin{array}{l} \frac{HP_{21}}{F_{21}} = \frac{HP_{22}}{F_{22}} = \frac{HP_{21} + HP_{22}}{F_{21} + F_{22}} = \frac{\varDelta}{F_{21} + F_{22}}, \mbox{ donc} HP_{21} = \frac{F_{21}\varDelta}{F_{21} + F_{22}}; \\ \mbox{comme } h_1 \mbox{ est conjugué à } H \mbox{ et } \Pi_1 \mbox{ à } P_{22}, \mbox{ on a, d'après la formule de NEWTON, } h_1P_{11} \cdot HP_{21} = F_{11}F_{21} = \Pi_1P_{11} \cdot \varDelta, \mbox{ donc} h_1P_{11} = \frac{F_{11}\left(F_{21} + F_{22}\right)}{\varDelta}, \mbox{ } \Pi_1P_{11} = \frac{F_{11}\left(F_{21} + F_{22}\right)}{\varDelta}, \mbox{ } \Pi_1P_{11} = \frac{F_{11}F_{21}}{\varDelta}, \mbox{ et en retranchant, } \Pi_1h_1 \\ = \frac{F_{11}F_{22}}{\varDelta}. \mbox{ Les expressions de } \Pi_2P_{12} \mbox{ et de } \Pi_2h_2 \mbox{ s'obtiennent } \\ \mbox{ de la même manière. - En désignant } \Pi_1P_{11} \mbox{ et } \Pi_2P_{12} \mbox{ par } \mu_1 \mbox{ et } \Psi_2, \mbox{ } \Pi_1h_1 \mbox{ et } \Pi_2h_2 \mbox{ par } \Psi_1 \mbox{ et } \Psi_2 \mbox{ les formules, déterminant } \end{array}$$

la position des points cardinaux, sont donc

$$y_{1} = \frac{F_{11}F_{21}}{\Delta}, \ \phi_{1} = \frac{F_{11}F_{22}}{\Delta}$$

$$y_{2} = \frac{F_{12}F_{22}}{\Delta}, \ \phi_{2} = \frac{F_{12}F_{21}}{\Delta}.$$
(3)

2*

Ces formules sont identiques à celles qu'on obtient dans le cas d'incidence centrale et normale (v. TSCHERNING, Physiologic Optics, Philadelphia 1900, p. 21).

Résumé.

Lorsqu'un faisceau étroit rencontre une série de surfaces réfringentes, qui n'ont pas besoin d'être centrées, les rayons se divisent en deux systèmes correspondant aux deux lignes focales. Les rayons appartenant à l'un comme à l'autre système sont soumis à la loi exprimée par la formule de NEWTON que le produit des distances de points conjugués aux foyers respectifs est constant. Chaque système possède six points cardinaux, dont trois, le premier point principal, le premier point nodal et le foyer antérieur sont liés au faisceau incident, tandis que les trois autres, le second point principal, le second point nodal et le fover postérieur sont liés au faisceau sortant. Les foyers sont les points où se réunissent, après réfraction, les rayons d'un faisceau incident à rayons parallèles, les points principaux sont les points conjugués pour lesquels le grossissement est égal à 1, et les points nodaux des points tels que des parallèles passant par ces points coupent les axes des faisceaux respectifs en des points conjugués. Les foyers et les points principaux sont situés sur les axes des faisceaux, tandis que les points nodaux sont situés sur des droites, parallèles aux axes et passant par les fovers.

Si on réunit les points principaux et les points nodaux par des droites, on obtient un parallèlogramme $(h_1h_2k_1k_2$ Fig. 9 II). — En réunissant les trois points cardinaux antérieurs par des droites et en faisant de même pour les trois points cardinaux postérieurs, on obtient deux triangles égaux dont les côtés sont parallèles deux à deux. Il n'est pas nécessaire que l'axe du faisceau sortant soit dans le même plan que l'axe du faisceau incident. En ce qui concerne les foyers et les points nodaux la seule condition est que le faisceau soit de petit diamètre. Pour les points principaux il faut ajouter la condition que l'objet soit petit.

La fig. 9 I montre la position des points cardinaux d'une

surface réfringente et la fig. 9 II les points cardinaux d'un système optique complet. Sur la fig. 9 III sont représentés les points cardinaux d'un système centré dans le cas d'incidence centrale et normale. Les distances focales sont les mêmes dans les trois cas. On peut obtenir la fig. 9 II en coupant la fig. 9 I en deux suivant la droite $B\mathcal{Q}$ et en dépla-

Fig. 9. I. Points cardinaux d'une surface.

II. Points cardinaux d'un système optique.

III. Points cardinaux d'un système optique dans le cas d'incidence centrale et normale.

cant la moitié droite de la figure parallèlement à elle même. On peut obtenir la fig. 9 III en faisant subir à h_2P_2 , fig. 9 II, une rotation dans le plan du papier, autour du point h_2 , en se rappelant que P_1k_1 doit rester parallèle au rayon sortant, P_2k_2 parallèle au rayon incident; le second plan principal doit rester perpendiculaire sur le rayon sortant. — Si, enfin, on se figure la moitié droite de la fig. 9 II déplacée parallèlement à elle même en dehors du plan du papier, on obtient le cas, où les axes des faisceaux incident et sortant ne sont pas situés dans le même plan.

II.

D'après ce qui précède on peut déterminer la position et la grandeur de l'image d'un petit objet, formée par une série de surfaces, centrées ou non, si on connaît la marche du rayon-axe du faisceau et la position des points cardinaux du système résultant. Pour construire la marche du rayon il suffit de pouvoir construire le rayon réfracté par une seule surface, puisqu'on peut répéter la construction pour chaque nouvelle surface que rencontre le rayon. D'autre part on peut déterminer les points cardinaux du système résultant, si on connait les points cardinaux des surfaces composantes. Le problème se réduit donc à celui de déterminer la marche d'un ravon réfracté par une surface et de trouver les points cardinaux, c'est à dire les centres optiques, de cette surface. Je montrerai d'abord comment on peut résoudre ces problèmes et j'en tirerai ensuite les conséquences dans le cas des lentilles.

Surfaces réfringentes.

Construction du rayon réfracté.

Il existe différentes méthodes pour construire le rayon réfracté. Je me borne à rappeler la suivante. On la trouve déjà chez TH. YOUNG; je ne sais, si elle est de lui ou de ses prédécesseurs.

Soient GE, fig. 10, la surface réfringente, O_1 son centre, R_1 son rayon de courbure, n l'indice de réfraction, AB le rayon incident, i_1 l'angle d'incidence et r_1 l'angle de réfraction. Pour trouver la direction du rayon réfracté on trace autour de O_1 comme centre, les deux arcs de cercle HK et LM; le rayon du premier est égal à nR_1 , celui du second à $\frac{R_1}{n}$. Soit B_1 le point d'intersection du rayon incident avec l'arc HK. On trace la droite O_1B_1 . Si D est le point dans

Fig. 10. Construction du rayon réfracté.

lequel cette droite coupe l'arc LM, BD est le rayon réfracté. Remarquons d'abord que $\angle BB_1O_1 = r_1$, car le triangle O_1BB_1 donne la relation $\sin BB_1O_1 = \frac{R_1 \sin i_1}{nR_1} = \sin r_1$. D'autre part, les triangles BB_1O_1 et BDO_1 sont semblables, comme l'angle BO_1B_1 est commun, et qu'on a en outre la relation

$$\frac{B_1O_1}{BO_1} = \frac{BO_1}{DO_1} = n.$$

Les angles des deux triangles sont donc égaux deux à deux, par conséquent $\angle O_1BD = O_1B_1B = r_1$. BD est donc le rayon réfracté.

Centres optiques.

Le centre optique du système B est le centre géométrique de la surface. Nous avons vu que les distanses focales ont les expressions

$$F_{1}'' = \frac{R_{1}}{n \cos r_{1} - \cos i_{1}}, \ F_{2}'' = \frac{nR_{1}}{n \cos r_{1} - \cos i_{1}}.$$

En traçant par le centre O_1 , Fig. 10, les droites O_1P_2'' et O_1P_1'' , parallèles aux rayons incident et réfracté on a

$$\begin{array}{l} O_1 P_2'' = B P_1'' = R_1 \frac{\sin r_1}{\sin (i_1 - r_1)} = \frac{R_1}{n \cos r_1 - \cos i_1} \\ B P_2'' = O_1 P_1'' = R_1 \frac{\sin i_1}{\sin (i_1 - r_1)} = \frac{nR_1}{n \cos r_1 - \cos i_1} \\ \text{par conséquent } B P_1'' = F_1'', \ B P_2'' = F_2''. \end{array} \right\} (\bigtriangleup O_1 B P_1''),$$

 P_1'' et P_2'' sont donc les deux foyers, $P_1''O_1$ et $P_2''O_1$ les droites que nous avons désignées par λ_1 et λ_2 , et O_1 , leur point d'intersection, le centre optique.

On trouve le centre optique du système A de la manière suivante. On construit d'abord le rayon réfracté, BD (Fig. 11)

Fig. 11. Construction pour trouver le centre relatif à la première ligne focale, O'_1 .

comme je viens de l'indiquer. On abaisse de O_1 la perpendiculaire, O_1L , sur le rayon incident, et de L la perpendiculaire LO'_1 sur O_1B_1 . O'_1 est le centre optique; les droites $O'_1P'_2$ et $O'_1P'_1$, parallèles aux rayons incident et réfracté, sont les droites λ_1 et λ_2 , et P'_1 et P'_2 sont les foyers¹.

Nous savons que les distances focales s'expriment par

$$F'_{1} = \frac{R_{1}\cos^{2}i_{1}}{n\cos r_{1} - \cos i_{1}}, \ F'_{2} = \frac{nR_{1}\cos^{2}r_{1}}{n\cos r_{1} - \cos i_{1}}.$$

¹ La construction m'a été communiquée par mon fils René TSCHERNING. TH. YOUNG abaissait de O_1 une perpendiculaire sur la droite LN, tracée de manière à diviser les deux cordes BC et BMen moitiés égales. Remarquons que

$$B_1 L = B_1 O_1 \cos r_1 = nR_1 \cos r_1 \text{ et } B_1 O_1' = B_1 L \cos r_1 = nR_1 \cos^2 r_1$$

En traçant la droite $P'_1O'_1$, parallèle à BP''_2 , on a

$$\begin{split} P_1'O_1' &= BP_2' = B_1O_1'\frac{\sin r_1}{\sin (i_1 - r_1)} = B_1O_1'\frac{1}{n\cos r_1 - \cos i_1} \\ &= \frac{nR_1\cos^2 r_1}{n\cos r_1 - \cos i_1} = F_2', \ (\bigtriangleup \ P_1'O_1'B_1). \end{split}$$

 P'_2 est donc le foyer postérieur. — On a de même, en traçant $P'_2O'_1$ parallèle à AB,

traçant $P'_{2}O'_{1}$ parallèle à AB, $P'_{2}O'_{1} = P'_{1}B = DO'_{1}\frac{\sin i_{1}}{\sin (i_{1}-r_{1})}(\bigtriangleup O'_{1}DP'_{2}),$ mais

 $DO'_{1} = DO_{1} - O_{1}O'_{1}, DO_{1} = \frac{R_{1}}{n}, O_{1}O'_{1} = LO_{1}\sin r_{1} = nR_{1}\sin^{2}r_{1},$ donc

$$DO'_{1} = \frac{R_{1}}{n} - nR_{1}\sin^{2}r_{1} = \frac{R_{1}}{n}(1 - n^{2}\sin^{2}r_{1}) = \frac{R_{1}}{n}\cos^{2}i_{1}.$$

En mettant cette valeur de DO'_1 , dans l'expression de P'_1B , on a

$$P'_{1}B = \frac{R_{1}\cos^{2}i_{1}}{n} \cdot \frac{\sin i_{1}}{\sin (i_{1} - r_{1})} = \frac{R_{1}\cos^{2}i_{1}\sin r_{1}}{\sin (i_{1} - r_{1})}$$
$$= \frac{R_{1}\cos^{2}i_{1}}{n\cos r_{1} - \cos i_{1}} = F'_{1}$$

ce qui montre que P'_1 est le foyer antérieur. O'_1 , le point d'intersection des droites $P'_1O'_1$ et $P'_2O'_1$ (λ_1 et λ_2), est donc le centre optique.

Cas spéciaux.

La distance entre les deux centres est, comme nous venons de voir, $O'_1O_1 = nR_1 \sin^2 r_1$. Lorsque l'angle d'incidence diminue, cette distance diminue également, le centre du système A se rapprochant du centre géométrique; à l'incidence normale les deux centres coïncident et les expressions des distances focales prennent la forme bien connue

$$F_1 = \frac{R_1}{n-1}, \ F_2 = \frac{nR_1}{n-1}.$$

Si la surface réfringente est plane les foyers sont à l'infini et la construction que je viens d'indiquer ne peut pas servir. Les formules (1) et (2) prennent la forme

$$\frac{\cos^2 i_1}{f_1} + \frac{n \cos^2 r_1}{f'_2} = 0, \text{ ou } f'_2 = -\frac{n f_1 \cos^2 r_1}{\cos^2 i_1},$$
$$\frac{1}{f_1} + \frac{n}{f'_2} = 0 \text{ ou } f''_2 = -n f_1.$$

On peut trouver la position des images d'un point donné A_1 (Fig. 12) de la manière suivante. Si GE est la surface

Fig. 12. Construction pour trouver les lignes focales dans le cas de réfraction par une surface plane, GE.

réfringente, et A_1B le rayon incident, on trace A_1N , normale à la surface réfringente et on marque sur cette droite le point A''_1 , de sorte que $A''_1B = n \cdot A_1B$. A''_1B est le (prolongement du) rayon réfracté et A''_1 l'image de A_1 , formée par le système B (la deuxième ligne focale). Pour trouver l'image formée par le système A, (la première ligne focale), on abaisse de A''_1 la droite $A''_1C \perp LB$ et de C la droite $CH \perp A''_1B$. On marque le point M sur le rayon incident,

26

et

de sorte que BM = BH. On élève $LM \perp BQ$ et $LQ \perp BL$. En marquant le point A'_1 de sorte que $BA'_1 = BQ$, A'_1 est l'image cherchée, car on a

$$BC = BA''_{1} \cos r_{1} = nf_{1} \cos r_{1}$$

$$BH = BC \cos r_{1} = nf_{1} \cos^{2} r_{1} = BM,$$

$$LB = \frac{BM}{\cos i_{1}} = \frac{nf_{1} \cos^{2} r_{1}}{\cos i_{1}}$$

$$BA'_{1} = BQ = \frac{LB}{\cos i_{1}} = \frac{nf_{1} \cos^{2} r_{1}}{\cos^{2} i_{1}}.$$

Le signe négatif des expressions indique que A'_1 et A''_1 sont situés, non pas sur le rayon réfracté, mais sur son prolongement en arrière.

Lentilles.

Constructions permettant de trouver les points cardinaux.

On trouve les points cardinaux d'une lentille au moyen des constructions que nous avons déja indiquées. Prenons comme exemple le système B de la lentille biconvexe de la fig. 13. On construit d'abord la marche du rayon ABDE. On marque sur le rayon une fois réfracté les foyers postérieurs des deux surfaces, P'_{21} en traçant par le centre O_1 la droite $O_1 P_{21}''$ parallèle au rayon incident, et P_{22}'' en traçant par le centre O_2 la droite $O_2 P_{22}''$, parallèle au rayon sortant. Le foyer antérieur du système B est Π_1 , le point, où la droite $P_{22}''O_1$ coupe le rayon incident, comme le foyer postérieur, est Π''_2 , le point, où la droite $P''_{21}O_2$ coupe le rayon sortant. Le premier point nodal est k_1 , le point, où une droite (λ_1) par Π_1'' , parallèle au rayon sortant, coupe l'axe, et le deuxième point nodal, k_2'' , le point d'intersection de l'axe avec une droite (λ_2) par Π''_2 , parallèle au rayon incident. Le premier point principal, h_1 , est situé sur le prolongement du rayon incident, à une distance de Π_1'' égale à $\Pi_{2}^{"}k_{2}^{"}$, et le deuxième point principal, h_{2} , sur le prolongement du rayon sortant, à une distance de H''_2 , égale à $\Pi''_1k''_1$. — Pour le système A on commence par déterminer les centres optiques des surfaces, O'_1 et O'_2 , au moyen de la construction indiquée p. 24. Les positions des points cardinaux s'obtiennent par les mêmes constructions que pour le système B,

Fig. 13. Points cardinaux d'une lentille épaisse.

en remplaçant O_1 et O_2 par O'_1 et O'_2 . Les points nodaux sont situés sur la droite $O'_1O'_2$, qu'on pourrait désigner comme axe secondaire.

Formules permettant de trouver les points cardinaux.

Pour établir les formules déterminant la position des points cardinaux on n'aurait qu'à introduire les valeurs des distances focales des surfaces dans les formules (3) (p. 19). Il est pourtant préférable au lieu de y_1 et y_2 d'indiquer les distances des points principaux aux surfaces correspondantes. On a $h_1B = y_1 + \varphi_1 - F_{11}$ et $h_2D = y_2 + \varphi_2 - F_{12}$. Il est commode aussi de remplacer \varDelta par sa valeur $\varDelta = F_{21} + F_{22} - d$, en désignant, par d, la distance BD, le parcours du rayon dans l'intérieur de la lentille. Avec ces changements les formules (3) prennent l'aspect suivant:

La théorie de Gauss.

$$h_{1}B = \frac{dF_{11}}{F_{21} + F_{22} - d}, \quad \Phi_{1} = \frac{F_{11}F_{22}}{F_{21} + F_{22} - d},$$

$$h_{2}D = \frac{dF_{12}}{F_{21} + F_{22} - d}, \quad \Phi_{2} = \frac{F_{12}F_{21}}{F_{21} + F_{22} - d}.$$
(3 a)

En désignant par R_2 , i_2 et r_2 le rayon, l'angle d'incidence et l'angle de réfraction de la deuxième surface, on obtient, en introduisant les valeurs des distances focales des surfaces, les expressions suivantes.

Système A.

$$h'_{1}B = \frac{dR_{1}\cos^{2}i_{1}(n\cos r_{2} - \cos i_{2})}{N'}, \quad \Phi'_{1} = \frac{nR_{1}R_{2}\cos^{2}i_{1}\cos^{2}r_{2}}{N'}$$

 $h'_{2}D = \frac{dR_{2}\cos^{2}i_{2}(n\cos r_{1} - \cos i_{1})}{N'}, \quad \Phi'_{2} = \frac{nR_{1}R_{2}\cos^{2}i_{2}\cos^{2}r_{1}}{N'}.$

La valeur du dénominateur est

$$\begin{split} N' &= n R_1 \cos^2 r_1 \left(n \cos r_2 - \cos \, i_2 \right) + n R_2 \cos^2 r_2 (n \cos r_1 - \cos \, i_1) \\ &- d \left(n \cos r_1 - \cos \, i_1 \right) (n \cos r_2 - \cos \, i_2). \end{split}$$

Système B.

$$h''_{1}B = \frac{dR_{1} (n \cos r_{2} - \cos i_{2})}{N''}, \ \theta''_{1} = \frac{nR_{1}R_{2}}{N''}$$

 $h''_{2}D = \frac{dR_{2} (n \cos r_{1} - \cos i_{1})}{N''}, \ \theta''_{2} = \theta''_{1}.$

La valeur du dénominateur est

$$N'' = nR_1 (n \cos r_2 - \cos i_2) + nR_2 (n \cos r_1 - \cos i_1) - d (n \cos r_1 - \cos i_1) (n \cos r_2 - \cos i_2).$$

On remarque que les distances focales du système A ne sont pas égales entre elles et que les points principaux des deux systèmes ne coïncident pas. Si les foyers des deux systèmes coïncident d'un coté de la lentille, les distances focales correspondantes ne sont donc pas égales et les foyers de l'autre côté ne coïncident pas. Cas spéciaux.

I. Si $i_2 = i_1$ on a aussi $r_2 = r_1$ et le rayon sortant est parallèle au rayon incident. La droite λ_1 coïncide avec le

Fig. 14.

rayon incident, λ_2 avec le rayon sortant. Les points nodaux sont les points dans lesquels les rayons incident et sortant coupent la droite O_1O_2 $(O'_1O'_2)$ (Fig. 14). Ces points sont en même temps les points principaux, puisqu'on a $k_1P_1 = h_1P_1$ les distances focales antérieure et postérieure étant égales. Dans ce cas on ne peut pas employer les points nodaux pour trouver des points conjugués.

II. Dans le cas d'incidence centrale et normale les deux systèmes se confondent en un seul, dont les points cardinaux sont situés sur l'axe. Les formules prennent la forme connue

$$\begin{split} h_1B = & \frac{dR_1}{n(R_1 + R_2) - (n-1)d}, \ \phi_1 = \frac{nR_1R_2}{(n-1)(n(R_1 + R_2) - (n-1)d)}, \\ h_2D = & \frac{dR_2}{n(R_1 + R_2) - (n-1)d} = \phi_2. \end{split}$$

Les points principaux coïncident avec les points nodaux.

III. L'entilles infiniment minces. Lorsque l'épaisseur de la lentille est négligeable, on a d = 0; on obtient les formules suivantes

Les points principaux coïncident tous les quatre au point d'incidence B. Les points nodaux du système A coïncident entre eux de manière à former le centre optique \mathcal{Q}' (Fig. 15) ceux du système B forment le centre optique \mathcal{Q}'' . On peut trouver ce dernier point par une construction très simple; c'est le point où la bissectrice de l'angle, formé par le rayon incident et le rayon sortant, coupe l'axe; comme les distances focales sont égales, le quadrilatère $\Pi_1 B \Pi_2 \Omega''$ est en effet un losange et $B \Omega''$ par conséquent bissectrice de l'angle $\Pi_1 B \Pi_2''$. Remarquons encore que l'inverse de la distance focale du système B est égal à la somme des inverses des distances focales antérieures des deux surfaces, comme c'est le cas pour l'incidence centrale et normale.

Fig. 15. Points cardinaux d'une lentille infiniment mince.

Dans le cas d'incidence centrale, oblique, les formules deviennent très simples, lorsque l'épaisseur de la lentille est négligeable. Elles peuvent s'écrire

> Système A. $\frac{1}{\varPhi_1'} = \frac{1}{\varPhi_2'} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{n\cos r_1 - \cos i_1}{\cos^2 i_1},$ Système B. $\frac{1}{\varPhi_1''} = \frac{1}{\varPhi_2''} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) (n\cos r_1 - \cos i_1).$

TH. YOUNG avait déja établi ces dernières formules qu'on a souvent attribué à HERMANN (Ueber schiefen Durchgang von Strahlenbündeln durch Linsen. Zürich. 1874.)

III.

Comme la présence des termes trigonométriques rend l'emploi des formules exactes peu commode, j'ai développé des formules d'approximation pour les surfaces réfringentes ainsi que pour les lentilles dont on peut négliger l'épaisseur.

Surfaces réfringentes.

Soient GM (Fig. 16) la surface réfringente, O son centre géometrique, A_1B le rayon incident, BN_1 le rayon réfracté et i_1 et r_1 les angles d'incidence et de réfraction. Choissisons un axe arbitraire NO. Au lieu des angles i_1 et r_1 nous allons introduire dans les formules 1°) la distance, y, du point d'incidence jusqu'à l'axe et 2°) la distance NS = a, la distance du point d'intersection du rayon incident avec l'axe jusqu'à la surface. Il faut d'abord exprimer les fonctions trigonométriques de i_1 et r_1 par des termes contenant

y et a. Dans le calcul nous négligerons les termes contenant des puissances de y plus élevées que la deuxième. On sait que dans ces conditions $\sqrt{1 \pm y^2 k} = 1 \pm \frac{1}{2} y^2 k$. Le triangle ONB donne les relations

$$\sin i_{1} = \frac{a + R_{1}}{NB} \cdot \sin \omega = \frac{a + R_{1}}{NB} \cdot \frac{y}{R_{1}},$$

$$\overline{NB^{2}} = (a + R_{1})^{2} + R_{1}^{2} - 2 (a + R_{1})R_{1} \cos \omega$$

$$= (a + R_{1})^{2} + R_{1}^{2} - 2 (a + R_{1})R_{1} \left(1 - \frac{y^{2}}{2R_{1}^{2}}\right)$$

$$= a^{2} + \frac{ay^{2}}{R_{1}} + y^{2}$$

$$= a^{2} \left(1 + y^{2} \left(\frac{1}{aR_{1}} + \frac{1}{a^{2}}\right)\right),$$

$$\overline{NB} = a \sqrt{1 + y^{2} \left(\frac{1}{aR_{1}} + \frac{1}{a^{2}}\right)}$$

Vidensk. Selsk. Math.-fysiske Medd. 1, 15.

3

$$egin{aligned} &= a \left(1 + rac{y^2}{2} \Big(rac{1}{aR_1} + rac{1}{a^2} \Big) \Big) \ &= a + rac{y^2}{2} \Big(rac{1}{R_1} + rac{1}{a} \Big). \end{aligned}$$

En introduisant cette valeur de \overline{NB} dans l'expression de sin i_1 , on a

$$\sin i_{1} = \frac{a + R_{1}}{NB} \frac{y}{R_{1}}$$

$$= \frac{a + R_{1}}{a + \frac{y^{2}}{2} \left(\frac{1}{R_{1}} + \frac{1}{a}\right)} \cdot \frac{y}{R_{1}}$$

$$= \frac{(a + R_{1}) \left(a - \frac{y^{2}}{2} \left(\frac{1}{R_{1}} + \frac{1}{a}\right)\right)}{a^{2}} \cdot \frac{y}{R_{1}}$$

$$= \frac{a (a + R_{1}) y}{a^{2} R_{1}}$$

$$= y \left(\frac{1}{a} + \frac{1}{R_{1}}\right).$$

On obtient ainsi les expressions suivantes

$$\begin{split} \sin i_1 &= y \left(\frac{1}{a} + \frac{1}{R_1}\right), \ \cos i_1 &= 1 - \frac{y^2}{2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \\ \sin r_1 &= \frac{y}{n} \left(\frac{1}{a} + \frac{1}{R_1}\right), \ \cos r_1 &= 1 - \frac{y^2}{2 n^2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \\ \sin^2 i_1 &= y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \ \cos^2 i_1 &= 1 - y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \\ \sin^2 r_1 &= \frac{y^2}{n^2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \ \cos^2 r_1 &= 1 - \frac{y^2}{n^2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \end{split}$$

expressions qu'il faut introduire dans les formules (1) et (2). Le deuxième membre de ces formules prend la forme

$$\frac{n\cos r_1 - \cos i_1}{R_1} = \frac{n\left(1 - \frac{y^2}{2n^2}\left(\frac{1}{a} + \frac{1}{R_1}\right)^2\right) - 1 + \frac{y^2}{2}\left(\frac{1}{a} + \frac{1}{R_1}\right)^2}{R_1} \\ = \frac{n - 1}{R_1} + \frac{n - 1}{2nR_1}y^2\left(\frac{1}{a} + \frac{1}{R_1}\right)^2.$$

Pour le premier membre de la formule (1) on a

$$\frac{\cos^2 i_1}{f_1} + \frac{n\cos^2 r_1}{f_2} = \frac{1 - y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2}{f_1} + \frac{n - \frac{y^2}{n} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2}{f_2'} \\ = \frac{1}{f_1} + \frac{n}{f_2'} - y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{1}{f_1} + \frac{1}{nf_2'}\right).$$

Dans le cas d'incidence centrale et normale on a $\cos i_1 = \cos r_1$ = 1 et y = 0, donc

$$\frac{\frac{1}{f_1} + \frac{n}{f_{2_0}} = \frac{n-1}{R_1}}{\frac{1}{f_{2_0}} = \frac{n-1}{nR_1} - \frac{1}{nf_1}}$$

ou

Comme f_{2_0} ne diffère pas beaucoup de f'_2 on peut remplacer $\frac{1}{f'_2}$, par cette valeur de $\frac{1}{f_{2_0}}$, dans le terme qui contient y^2 . On a alors

$$\begin{split} \frac{\cos^2 i_1}{f_1} + \frac{n\cos^2 r_1}{f_2} &= \frac{1}{f_1} + \frac{n}{f_2'} - y^2 \Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \Big(\frac{1}{f_1} + \frac{n-1}{n^2 R_1} - \frac{1}{n^2 f_1}\Big) \\ &= \frac{1}{f_1} + \frac{n}{f_2} - y^2 \Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \Big(\frac{n^2-1}{n^2 f_1} + \frac{n-1}{n^2 R_1}\Big) \\ &= \frac{1}{f_1} + \frac{n}{f_2} - y^2 \frac{n-1}{2n} \Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \Big(\frac{2(n+1)}{n f_1} + \frac{2}{n R_1}\Big). \end{split}$$

La formule (1) prend la forme

$$\begin{aligned} \frac{1}{f_1} + \frac{n}{f'_2} - y^2 \frac{n-1}{2n} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{2n+2}{nf_1} + \frac{2}{nR_1}\right) \\ &= \frac{n-1}{R_1} + \frac{n-1}{2n} \cdot y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \cdot \frac{1}{R_1}. \\ \frac{1}{f_1} + \frac{n}{f_2} &= \frac{n-1}{R_1} + \frac{n-1}{2n} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{2n+2}{nf_1} + \frac{2}{nR_1} + \frac{1}{R_1}\right) \\ &= \frac{n-1}{R_1} + \frac{n-1}{n^2} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{n+1}{f_1} + \frac{n+2}{2R_1}\right). \end{aligned}$$
(1 b)

et la formule (2) devient

$$\frac{1}{f_1} + \frac{n}{f_2''} = \frac{n-1}{R_1} + \frac{n-1}{2nR_1} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2.$$
(2 b)

L'expression de l'astigmatisme se trouve en retranchant (2 b) de (1 b)

$$\frac{n}{f_2'} - \frac{n}{f_2''} = \frac{n-1}{n^2} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{n+1}{f_1} + \frac{1}{R_1}\right).$$
(4)

Si le point lumineux qui représente l'objet est situé sur l'axe, en N, Fig. 16, et si N_{1_0} est le point où se réunissent les rayons centraux, on a, en désignant les distances SN_{1_0} par b_0 et SN_1 par b, l'expression suivante pour l'aberration de sphéricité longitudinale (v. VERDET, Conférences de physique, II)

$$\frac{n}{b} - \frac{n}{b_0} = \frac{n-1}{2n^2} y^2 \Big(\frac{1}{a} + \frac{1}{R_1} \Big)^2 \Big(\frac{n+1}{a} + \frac{1}{R_1} \Big).$$

Le degré de l'astigmatisme est dans ce cas le double de celui de l'aberration longitudinale, la différence entre a et f_1 (dans le dernier facteur) étant négligeable dans les conditions données.

Lentilles infiniment minces.

En introduisant dans la formule $\frac{\Phi_1}{\varphi_1} + \frac{\Phi_2}{\varphi_2} = 1$ les valeurs des distance focales d'une lentille infiniment mince (v. p. 31) on obtient les expressions suivantes

 $\begin{aligned} & \text{Système A.} \\ \frac{\cos^2 i_1}{\varphi_1 \cos^2 r_1} + \frac{\cos^2 i_2}{\varphi_2' \cos^2 r_2} &= \frac{n \cos r_1 - \cos i_1}{R_1 \cos^2 r_1} + \frac{n \cos r_2 - \cos i_2}{R_2 \cos^2 r_2}, \\ & \text{Système B.} \\ \frac{1}{\varphi_1} + \frac{1}{\varphi_2'} &= \frac{n \cos r_1 - \cos i_1}{R_1} + \frac{n \cos r_2 - \cos i_2}{R_2} \end{aligned}$

expressions dont il faut chasser les termes trigonométriques. Nous avons déja vu comment il faut procéder pour les termes qui concernent la première surface. On procède de la même manière pour la deuxième surface en se figurant la lumière venant de droite et en remplaçant la distance

36

$$\begin{split} & \frac{n\cos r_1 - \cos i_1}{R_1} = \frac{n-1}{R_1} + \frac{n-1}{2nR_1} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, (\text{voir ci-dessus}) \\ & \frac{n\cos r_2 - \cos i_2}{R_2} = \frac{n-1}{R_2} + \frac{n-1}{2nR_2} y^2 \left(\frac{1}{a_0} + \frac{1}{R_2}\right)^2, \\ & \frac{n\cos r_1 - \cos i_1}{R_1\cos^2 r_1} = \frac{\frac{n-1}{R_1} + \frac{n-1}{2nR_1} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2}{1 - \frac{y^2}{n^2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2} \\ & = \frac{n-1}{R_1} + \frac{n-1}{n^2} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \frac{n+2}{2R_1}. \\ & \frac{n\cos r_2 - \cos i_2}{R_2\cos^2 r_2} = \frac{n-1}{R_2} + \frac{n-1}{n^2} y^2 \left(\frac{1}{a_0} + \frac{1}{R_2}\right)^2, \frac{n+2}{2R_2}. \\ & \frac{\cos^2 i_1}{\varphi_1\cos^2 r_1} = \frac{1 - y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2}{\varphi_1 \left(1 - \frac{y^2}{n^2} \left(\frac{1}{a} + \frac{1}{R_1}\right)^2\right)} \\ & = \frac{1}{\varphi_1} - \frac{n-1}{n^2} y^2 \left(\frac{1}{a} + \frac{1}{R_1}\right)^2, \frac{n+1}{\varphi_1} \\ & \text{et} \quad \frac{\cos^2 i_2}{\varphi_2'\cos^2 r_2} = \frac{1}{\varphi_2'} - \frac{n-1}{n^2} y^2 \left(\frac{1}{a_0} + \frac{1}{R_2}\right) \frac{n+1}{\varphi_2'}, \\ & \text{ou} \quad \frac{\cos^2 i_2}{\varphi_2'\cos^2 r_2} = \frac{1}{\varphi_2'} - \frac{n-1}{n^2} y^2 \left(\frac{1}{a_0} + \frac{1}{R_2}\right) \frac{n+1}{\varphi_2}, \end{split}$$

en désignant par A_{2_0} , fig. 17, le point où se réunissent des rayons centraux provenant d'un point, situé sur l'axe à la distance $= \varphi_1$ de la lentille, — et par φ_{2_0} la distance de A_{2_0} jusqu'à la lentille.

On obtient ainsi pour le système A

$$\begin{aligned} & \frac{\cos^2 i_1}{\varphi_1 \cos^2 r_1} + \frac{\cos^2 i_2}{\varphi_2' \cos^2 r_2} \\ &= \frac{1}{\varphi_1} + \frac{1}{\varphi_2'} - \frac{n-1}{n^2} y^2 \Big[\Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \cdot \frac{n+1}{\varphi_1} + \Big(\frac{1}{\alpha_0} + \frac{1}{R_2}\Big)^2 \cdot \frac{n+1}{\varphi_{2_0}} \Big] \end{aligned}$$

Fig. 17. Réfraction par une lentille convexe infiniment mince $(BG)^1$

Par conséquent

$$\begin{split} \frac{1}{\varphi_1} + \frac{1}{\varphi_2'} &- \frac{n-1}{n^2} y^2 \Big[\Big(\frac{1}{a} + \frac{1}{R_1} \Big)^2 \cdot \frac{n+1}{\varphi_1} + \Big(\frac{1}{a_0} + \frac{1}{R_2} \Big)^2 \frac{n+1}{\varphi_{2_0}} \Big] \\ &= (n-1) \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) + \frac{n-1}{n^2} y^2 \Big[\Big(\frac{1}{a} + \frac{1}{R_1} \Big)^2 \cdot \frac{n+2}{2R_1} + \Big(\frac{1}{a_0} + \frac{1}{R_2} \Big)^2 \cdot \frac{n+2}{2R_2} \Big], \end{split}$$

ou

 $\frac{1}{\varphi_1} + \frac{1}{\varphi_2'} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) +$ $+\frac{n-1}{n^2}y^2 \left[\left(\frac{1}{a} + \frac{1}{R_1}\right)^2 \left(\frac{n+1}{\varphi_1} + \frac{n+2}{2R_1}\right) + \left(\frac{1}{a_0} + \frac{1}{R_2}\right)^2 \left(\frac{n+1}{\varphi_2} + \frac{n+2}{2R_2}\right) \right]^{(2)} (5a)$

Pour le système B on a

$$\begin{split} \frac{1}{\varphi_1} + \frac{1}{\varphi_2^{''}} &= \frac{n\cos r_1 - \cos i_1}{R_1} + \frac{n\cos r_2 - \cos i_2}{R_2} \\ &= \frac{n-1}{R_1} + \frac{n-1}{2n} y^2 \Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \cdot \frac{1}{R_1} + \frac{n-1}{R_2} + \frac{n-1}{2n} y^2 \Big(\frac{1}{a_0} + \frac{1}{R_2}\Big)^2 \frac{1}{R_2} \\ &= (n-1) \Big(\frac{1}{R_1} + \frac{1}{R_2}\Big) + \frac{n-1}{2n} y^2 \Big[\Big(\frac{1}{a} + \frac{1}{R_1}\Big)^2 \cdot \frac{1}{R_1} + \Big(\frac{1}{a_0} + \frac{1}{R_2}\Big)^2 \frac{1}{R_2}\Big] (5\,\mathrm{b}) \end{split}$$

¹ On est prié de corriger la figure en remplaçant x par α et x_0 par α_0 . ² Pour obtenir une meilleure approximation on peut répéter le calcul, en mettant la valeur trouvée de φ'_2 à la place de φ_{2_0} .

En retranchant (5 b) de (5 a) on obtient l'expression de l'astigmatisme

$$\begin{aligned} \frac{1}{\varphi_{2}^{'}} - \frac{1}{\varphi_{2}^{''}} &= \frac{n-1}{n^{2}} y^{2} \Big[\Big(\frac{1}{a} + \frac{1}{R_{1}} \Big)^{2} \Big(\frac{n+1}{\varphi_{1}} + \frac{1}{R_{1}} \Big) + \\ & \Big(\frac{1}{a_{0}} + \frac{1}{R_{2}} \Big)^{2} \Big(\frac{n+1}{\varphi_{2_{0}}} + \frac{1}{R_{2}} \Big) \Big]. \end{aligned}$$
(5)

L'expression de l'aberration longitudinale d'une lentille est $\frac{n-1}{2n^2}y^2\left[\left(\frac{1}{a}+\frac{1}{R_1}\right)^2\left(\frac{n+1}{a}+\frac{1}{R_1}\right)+\left(\frac{1}{a_0}+\frac{1}{R_2}\right)^2\left(\frac{n+1}{a_0}+\frac{1}{R_2}\right)\right].$ (v. VERDET l. c.).

Lorsque le point lumineux est situé sur l'axe, la valeur de l'astigmatisme est donc le double de celle de l'aberration longitudinale, comme nous l'avons déja trouvé pour une simple surface.

On peut employer la formule 5 pour trouver la forme qu'il faut donner à une lentille pour faire disparaître l'astigmatisme par incidence oblique ou pour réduire cet astigmatisme à un minimum, dans les cas où on ne peut pas le faire disparaître complètement. Pour obtenir ce résultat il faut que le terme entre les crochets de la formule (5) soit égal à zéro ou devienne minimum. En désignant par φ_{2_0} la distance focale de la lentille dans le cas d'incidence centrale et normale, on a

$$\frac{1}{\varphi_{2_0}} = (n-1) \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) \text{ ou } \frac{1}{R_2} = \frac{1}{\varphi_{2_0}(n-1)} - \frac{1}{R_1}.$$

Si on met cette expression à la place de $\frac{1}{R_2}$ dans la formule (5) on peut trouver la valeur de R_1 qui fait disparaître l'astigmatisme. Le calcul est assez long mais sans difficultés. Je ne le communique pas ici, parce qu'il conduit à une expression que j'ai déja établie d'une autre manière, en posant la condition que les courbes focales doivent avoir le même rayon de courbure (v. Archiv für Optik I, p. 404, et Encyclopédie française d'ophtalmologie III, p. 245). Dans le cas d'incidence centrale les formules que nous venons de développer deviennent inutilisables, puisque y = 0. — En désignant la distance du point lumineux qui représente l'objet, jusqu'à l'axe par η , on a

$$\begin{split} \sin i_{1} &= \frac{\eta}{\varphi_{1}} = \sin i_{2}, \, \sin r_{1} = \frac{\sin i_{1}}{n} = \frac{\eta}{n\varphi_{1}},\\ \cos i_{1} &= 1 - \frac{\eta^{2}}{2\varphi_{1}^{2}}, \, n \cos r_{1} = n - \frac{\eta^{2}}{2n\varphi_{1}^{2}},\\ n \cos r_{1} - \cos i_{1} &= n - 1 + \frac{n - 1}{2n} \cdot \eta^{2} \frac{1}{\varphi_{1}^{2}}.\\ \frac{n \cos r_{1} - \cos i_{1}}{\cos^{2} i_{1}} &= \frac{(n - 1)\left(1 + \frac{\eta^{2}}{2n\varphi_{1}^{2}}\right)}{1 - \frac{\eta^{2}}{\varphi_{1}^{2}}}\\ &= (n - 1)\left(1 + \frac{\eta^{2}}{2n\varphi_{1}^{2}} + \frac{\eta^{2}}{\varphi_{1}^{2}}\right)\\ &= (n - 1)\left(1 + \frac{\eta^{2}(2n + 1)}{2n\varphi_{1}^{2}}\right)\\ &= n - 1 + \frac{n - 1}{2n} \cdot \eta^{2} \cdot \frac{2n + 1}{\varphi_{1}^{2}}. \end{split}$$

et les expressions de la page 38 prennent la forme

$$\begin{split} \frac{1}{\varphi_1} + \frac{1}{\varphi_2'} &= (n-1) \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) + \frac{n-1}{2n} \, \eta^2 \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) \cdot \frac{2n+1}{\varphi_1^2}, \\ \frac{1}{\varphi_1} + \frac{1}{\varphi_2''} &= (n-1) \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) + \frac{n-1}{2n} \cdot \eta^2 \Big(\frac{1}{R_1} + \frac{1}{R_2} \Big) \cdot \frac{1}{\varphi_1^2}. \end{split}$$

En retranchant on obtient l'expression de l'astigmatisme

$$\begin{split} \frac{1}{\varphi_{2}^{'}} &- \frac{1}{\varphi_{2}^{''}} = (n-1) \Big(\frac{1}{R_{1}} + \frac{1}{R_{2}} \Big) \frac{\eta^{2}}{\varphi_{2}^{1}} \\ &= (n-1) \Big(\frac{1}{R_{1}} + \frac{1}{R_{2}} \Big) \sin^{2} i_{1} \end{split}$$

Dans le cas d'incidence centrale le degré de l'astigmatisme est donc égal à l'inverse de la distance focale de la lentille multiplié par le carré du sinus de l'angle d'incidence.

Færdig fra Trykkeriet d. 16 Oktober 1919.